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Abstract—Thiswork proposes a subspace approach that regularizes and extracts eigenfeatures from the face image. Eigenspace of the

within-class scatter matrix is decomposed into three subspaces: a reliable subspace spanned mainly by the facial variation, an unstable

subspace due to noise and finite number of training samples, and a null subspace. Eigenfeatures are regularized differently in these three

subspaces based on an eigenspectrummodel to alleviate problems of instability, overfitting, or poor generalization. This also enables the

discriminant evaluation performed in the whole space. Feature extraction or dimensionality reduction occurs only at the final stage after

the discriminant assessment. These efforts facilitate a discriminative and a stable low-dimensional feature representation of the face

image. Experiments comparing the proposed approach with some other popular subspace methods on the FERET, ORL, AR, and GT

databases show that our method consistently outperforms others.

Index Terms—Face recognition, linear discriminant analysis, regularization, feature extraction, subspace methods.
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1 INTRODUCTION

FACE recognitionhas attractedmany researchers in the area
of pattern recognition, machine learning, and computer

vision because of its immense application potential. Numer-
ous methods have been proposed in the last two decades [1],
[2].However, there are still substantial challengingproblems,
which remain to be unsolved. One of the critical issues is how
to extract discriminative and stable features for classification.
Linear subspace analysis has been extensively studied and
becomes a popular feature extraction method since the
principal component analysis (PCA) [3], Bayesian maximum
likelihood (BML) [4], [5], [6], and linear discriminant analysis
(LDA) [7], [8] were introduced into face recognition. A
theoretical analysis showed that a low-dimensional linear
subspace could capture the set of images of an object
produced by a variety of lighting conditions [9]. The agree-
able properties of the linear subspace analysis and its
promising performance achieved in the face recognition
encourage researchers to extend it to higher order statistics
[10], [11], nonlinear methods [12], [13], [14], Gabor features
[15], [16], and locality preserving projections [17], [18].
However, the basic linear subspace analysis has still out-
standing challenging problems when applied to the face
recognitiondue to thehighdimensionality of face images and
the finite number of training samples in practice.

PCA maximizes the variances of the extracted features
and, hence, minimizes the reconstruction error and removes
noise residing in the discarded dimensions. The best
representation of data may not perform well from the
classification point of view because the total scatter matrix

is contributed by both the within and between-class varia-
tions. To differentiate face images of one person from those of
the others, the discrimination of the features is the most
important. LDA is an efficient way to extract the discrimina-
tive features as it handles the within and between-class
variations separately. However, this method needs the
inverse of the within-class scatter matrix. This is problematic
in many practical face recognition tasks because the dimen-
sionality of the face image is usually very high compared to
the number of available training samples and, hence, the
within-class scatter matrix is often singular.

Numerous methods have been proposed to solve this
problem in the last decade. A popular approach called
Fisherface (FLDA) [19] applies PCA first for dimensionality
reduction so as to make the within-class scatter matrix
nonsingular before the application of LDA. However,
applying PCA for dimensionality reduction may result in
the loss of discriminative information [20], [21], [22]. Direct
LDA (DLDA) method [23], [24] removes null space of the
between-class scatter matrix and extracts the eigenvectors
corresponding to the smallest eigenvalues of the within-class
scatter matrix. It is an open question of how to scale the
extracted features, as the smallest eigenvalues are very
sensitive to noise. The null space (NLDA) approaches [25],
[26], [22] assume that the null space contains the most
discriminative information. Interestingly, this appears to be
contradicting the popular FLDA that only uses the principal
space and discards the null space. A common problem of all
these approaches is that they all lose some discriminative
information, either in the principal or in the null space.

In fact, the discriminative information resides in both
subspaces. To use both subspaces, amodified LDA approach
[27] replaces thewithin-class scattermatrix by the total scatter
matrix. Subsequent work [28] extracts features separately
from the principal and null spaces of the within-class scatter
matrix. However, the extracted features may not be properly
scaledandundueemphasis isplacedon thenull space in these
two approaches due to the replacement of the within-class
scatter matrix by the total scatter matrix. The dual-space
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approach (DSL) [21] scales features in the complementary
subspaceby the average eigenvalue of thewithin-class scatter
matrix over this subspace.Aseigenvalues in this subspaceare
not well estimated [21], their average may not be a good
scaling factor relative to those in the principal subspace.
Features extracted from the two complementary subspaces
are properly fused by using summed normalized distance
[14]. Open questions of these approaches are how to divide
thespace into theprincipalandthecomplementarysubspaces
and how to apportion a given number of features to the two
subspaces. Furthermore, as the discriminative information
resides in both subspaces, it is inefficient or only suboptimal
to extract features separately from the two subspaces.

The above approaches focus on the problem of singularity
of the within-class scatter matrix. In fact, the instability and
noise disturbance of the small eigenvalues cause great
problems when the inverse of matrix is applied such as in
the Mahalanobis distance, in the BML estimation, and in the
whitening process of various LDA approaches. Problems of
the noise disturbance were addressed in [29], and a unified
framework of subspace methods (UFS) was proposed. Good
recognition performance of this framework shown in [29]
verifies the importance of noise suppression. However, this
approach applies three stages of subspace decompositions
sequentially on the face training data, and dimensionality
reduction occurs at the very first stage. As addressed in the
literature [20], [21], [22], applying PCA for dimensionality
reductionmay result in the lost ofdiscriminative information.
Another openquestion ofUFS is how to choose the number of
principal dimensions for the first two stages of subspace
decompositions before selecting the final number of features
at the third stage. The experimental results in [29] show that
recognition performance is sensitive to these choices at
different stages.

In this paper, we present a new approach for facial
eigenfeature regularization and extraction. Image space
spannedby the eigenvectors of thewithin-class scattermatrix
is decomposed into three subspaces. Eigenfeatures are
regularized differently in these subspaces based on an
eigenspectrum model. This alleviates the problem of unreli-
able small and zero eigenvalues caused by noise and the
limited number of training samples. It also enables discrimi-
nant evaluation to be performed in the full dimension of the
image data. Feature extraction or dimensionality reduction
occurs only at the final stage after the discriminant assess-
ment. In Section 2, we model the eigenspectrum, study the
effect of the unreliable small eigenvalues on the feature
weighting, and decompose the eigenspace into face, noise,
and null subspaces. Eigenfeature regularization and extrac-
tion are presented in Section 3. Analysis of the proposed
approach and comparison with other relevant methods are
provided in Section 4. Experimental results are presented in
Section 5 before drawing conclusions in Section 6.

2 EIGENSPECTRUM MODELING AND SUBSPACE

DECOMPOSITION

Given a set of properly normalized w-by-h face images, we
can form a training set of column image vectors fXijg, where
Xij 2 IRn¼wh, by lexicographic ordering the pixel elements of
image j of person i. Let the training set contain p persons and
qi sample images for person i. The number of total training

sample is l ¼ Pp
i¼1 qi. For face recognition, each person is a

class with prior probability of ci. The within-class scatter
matrix is defined by

Sw ¼
Xp
i¼1

ci
qi

Xqi
j¼1

ðXij �XiÞðXij �XiÞT ; ð1Þ

where Xi ¼ 1
qi

Pqi
j¼1 Xij. The between-class scatter matrix Sb

and the total (mixture) scatter matrix St are defined by

Sb ¼
Xp
i¼1

ciðXi �XÞðXi �XÞT ; ð2Þ

St ¼
Xp
i¼1

ci
qi

Xqi
j¼1

ðXij �XÞðXij �XÞT ; ð3Þ

where X ¼ Pp
i¼1 ciXi. If all classes have equal prior

probability, then ci ¼ 1=p.
Let Sg, g 2 ft; w; bg represent one of the above scatter

matrices. If we regard the elements of the image vector and
the class mean vector as features, these preliminary features
will be decorrelated by solving the eigenvalue problem

�g ¼ �gTSg�g; ð4Þ
where �g ¼ ½�g

1; . . . ; �
g
n� is the eigenvector matrix of Sg, and

�g is the diagonal matrix of eigenvalues �g
1; . . . ; �

g
n

corresponding to the eigenvectors.
Suppose that the eigenvalues are sorted in descending

order �g
1 �; . . . ;� �g

n. The plot of eigenvalues �g
k against the

index k is called eigenspectrum of the face training data. It
plays a critical role in subspace methods as the eigenvalues
are used to scale and extract features. We first model the
eigenspectrum to show its problems in feature scaling and
extraction.

2.1 Eigenspectrum Modeling

Ifwe regardXij as samples of a randomvariable vectorX, the
eigenvalue �g

k is a variance estimate of X projected on the
eigenvector�g

k estimated from the training samples. It usually
deviates from the true variance of the projected random
vectorX due to the finite number of training samples. Thus,
we model the eigenspectrum in the range subspace �g

k,
1 � k � r, as the sum of the true variance component vFk and
a deviation component �k. For simplicity, we call vFk
face component and �k noise component. As the face
component typically decays rapidly and stabilizes, we can
model it by a function of the form 1=f that can well fit to the
decaying nature of the eigenspectrum. The function form 1=f
wasused in [4] to extrapolate eigenvalues in the null space for
computing the average eigenvalue over a subspace. Thenoise
component �k that includes the effect of the finite number of
training samples can be negative if the face component vFk is
modeled by a 1=f function that always has positive values.

We propose to model the eigenvalues first in descending
order of the face component vFk by

�̂F
k ¼ vFk þ �k ¼ �

kþ �
þ �k; 1 � k � r; ð5Þ

where � and � are two constants that will be given in
Section 3.1. The modeled eigenspectrum �̂g

k is then obtained
by sorting �̂F

k in descending order. As the eigenspectrum
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decays very fast, we plot the square roots �g
k ¼

ffiffiffiffi
�g
k

p
and �̂gk ¼ffiffiffiffi

�̂g
k

p
for clearer illustration (we still call them eigenspectrum

for simplicity). A typical real eigenspectrum �g
k and its

model �̂g
k are shown in Fig. 1, where �k is a random number

evenly distributed in a small range of ½��g
1=1000; �

g
1=1000�.

In Fig. 1, we see that the proposed model closely
approximates to the real eigenspectrum.

2.2 Problems of Feature Scaling and Extraction

The PCA approach with euclidean distance selects d leading
eigenvectors and discards the others. This can be seen as
weighting the eigenfeatures with a step function as

ud
k ¼

1; k � d
0; k > d:

�
ð6Þ

Thisweighting function of PCAwP
k ¼ ud

k is shown in Fig. 1.
In a practical face recognition problem, the recognition
performance usually improves with the increase of d. The
PCA with Mahalanobis (PCAM) distance can be seen as the
PCA with euclidean distance and a weighting function
wM

k ¼ ud
k=�

g
k. This weighting function is shown in Fig. 1.

Using the inverseof the square rootof the eigenvalue toweigh
the eigenfeature makes a large difference in the face
recognition performance. The recognition accuracy usually
increases sharply with the increase of d and is better than the
euclidean distance for smaller d. However, the recognition
accuracy decreases also sharply and is much worse than the
euclidean distance for larger d. The BML approach that
weights the principal features ð1 � k � dÞ by the inverse of
the square root of the eigenvalue also suffers from the
performancedecreasewith the increaseof thedafterd reaches
a small value.

Noise disturbance and poor estimates of small eigenva-
lues due to the finite number of training samples are the
culprits. The limited number of training samples results in
very small eigenvalues in some dimensions that may not
well represent the true variance in these dimensions. This
may result in serious problems if their inverses are used to
weight the eigenfeatures. The characteristics of the eigen-
spectrum and the generalization deterioration caused by the
small eigenvalues were well addressed in [30]. To exclude
the small eigenvalues in the discriminant evaluation,
probabilistic reasoning models and enhanced FLDA models
were proposed and compared in [30]. The modeled

eigenspectrum in Fig. 1 that approximates closely to the
real one is resorted in descending order of the face
component vFk and is plotted in Fig. 2. The small noise
disturbances are now visible in Fig. 2 given that the
variances of the face component should always decay.
These small disturbances cause large vibrations of the
inverse eigenspectrum, as shown in Fig. 2. Eigenfeatures of
larger index k are heavily weighted by the scaling factors
that are highly sensitive to noise and training data. This
causes the deterioration of the recognition performance,
especially on the independent testing data.

2.3 Subspace Decomposition

As shown in Fig. 2, small noise disturbances that have little
effect on the initial portion of the eigenspectrum cause large
vibrations of the inverse eigenspectrum in the region of small
eigenvalues. Therefore, we propose to decompose the eigen-
space IRn spanned by eigenvectors f�g

kgnk¼1 into three
subspaces: a reliable face variation dominating subspace (or
simply face space) F ¼ f�g

kgmk¼1, an unstable noise variation
dominating subspace (or simply noise space)N ¼ f�g

kgrk¼mþ1

and a null space ; ¼ f�g
kgnk¼rþ1, as illustrated in Fig. 2. The

purpose of this decomposition is to modify or regularize the
unreliable eigenvalues for better generalization.
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Fig. 1. A typical real eigenspectrum, (a) its model and feature weighting/extraction of PCA. The first 50 real eigenvalues and (b) the values of the

model.

Fig. 2. A typical real eigenspectrum, its model sorted in descending

order of the face component and their inverse; decomposition of the

eigenspace into face, noise, and null-subspaces.



It is not difficult to determine the rank of the scatter

matrix r. For St, r � minðn; l� 1Þ, for Sw, r � minðn; l� pÞ,
and for Sb, r � minðn; p� 1Þ. In practice, the rank of a

scatter matrix usually reaches the corresponding one of

these maximum values unless some training images are

linearly dependent. Even in this rare case, the rank r can be

easily determined by finding the maximal value of k that

satisfies �g
k > ", where " is a very small positive value

comparing to �g
1.

As face images have similar structure, significant face
components reside intrinsically in a very low-dimensional
(m-dimensional) subspace. Fora robust training, thedatabase
size should be significantly larger than the face dimension-
alitym, although it could be, and usually in practice is, much
smaller than the image dimensionality n. Thus, in many
practical face recognition training tasks, we usually have
m � r � n. As the face component typically decays rapidly
and stabilizes, eigenvalues in the face dominant subspace,
which constitute the initial portion of the eigenspectrum, are
the outliers of the whole spectrum. It is well known that
median operation works well in separating outliers from a
data set. To determine the start point of the noise dominant
regionmþ 1, we first find a point near the center of the noise
region by

�g
med ¼ median 8�g

kjk � r
� �

: ð7Þ
The distance between �g

med and the smallest nonzero
eigenvalue is dm;r ¼ �g

med � �g
r. The upper bound of the

unreliable eigenvalues is estimated by �g
med þ dm;r. Although

this is a reasonable choiceof theupperboundof theunreliable
eigenvalues, itmay not be optimal in all cases considering the
great variation of image size and the number of training
samples in different applications. More generally, the start
point of the noise regionmþ 1 is estimated by

�g
mþ1 ¼ max 8�g

kj�g
k < ð�g

med þ �ð�g
med � �g

rÞÞ
� �

; ð8Þ
where � is a constant. The optimal value of � may be
slightly larger or smaller than 1 for different applications.
To avoid exhaustive search for the best parameter value, �
is fixed to be 1 in all experiments of this paper for fair
comparisons with other approaches.

3 EIGENFEATURE REGULARIZATION AND

EXTRACTION

In general, it is desired to extract features that have the
smallestwithin-class variations and the largest between-class
variations. Problems occur in seeking the smallest within-
class variations because the variances are estimated based on
the finite number of training samples and, hence, the
estimated smaller variances are unstable and tend to overfit
the specific training data. It is not a surprise that the within-
class variation is the biggest obstacle to achieve high
recognition rate. Thus, we first work on the within-class
scatter matrix Sw.

After solving the eigenvalue problem as (4), a unit within-
class scatter matrix in the subspace �Yij 2 IRr can be obtained
by representing training sampleswith new feature vectors �Yij

�Yij ¼ ��wT
r Xij; ð9Þ

where ��w
r ¼ ½�w

1 =�
w
1 ; . . . ; �

w
r =�

w
r � are composed of so called

whitened eigenvectors of Sw with nonzero eigenvalues, and

k�w
k k ¼ 1. Thus, an n-dimensional image vector Xij is first

represented by an n-dimensional eigenfeature vector Yij ¼
�wTXij and then multiplied by a weighting function:

ww
k ¼ 1=

ffiffiffiffiffiffi
�w
k

p
; k � r

0 ; r < k � n;

�
ð10Þ

as shown in Fig. 3. The training data represented by the new

feature vectors �Yij will produce the same (unit) within-class

variances in all directions of the reduced feature space IRr. It

appears that the problem of the within-class variation is

solved.
However, there are two problems: First, face structural

information in the null space is lost or, equivalently, features

in the null space is weighted by a constant zero. This is

unreasonable because features in the null space are of zero

within-class variances based on the training data and, hence,

should be much heavier weighted. It seems anomalous that

the weighting function increases with the decrease of the

eigenvalues and then suddenly has a big drop from the

maximum value to zero, as shown in Fig. 3. Second, weights

determinedby the inverse of�w
k is, though optimal in terms of

theMLestimation,dangerouswhen�w
k is small. This is shown

in the modeled eigenspectrum in Fig. 2. The small and zero

eigenvalues are training-set specific and very sensitive to

different training sets.Addingnewsamples to the training set

or using different training set may easily change some zero

eigenvalues to nonzero and make some very small eigenva-

lues several times larger. Therefore, eigenspectrum needs to

be regularized.

3.1 Eigenspectrum Regularization

Although there is always noise component in F as noise

affects every element of the image vector, its variance is

very small comparing to the large variance of the face

structural component in F. InN, however, noise component

may dominate in the variance changes, and the finite

number of training samples results in faster decay of the

variances. Therefore, the decay of the eigenvalues should be

slowed down to compensate the effect of noise and the
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finite number of training samples. This can be done by
replacing the eigenspectrum with the proposed model (5).

As the eigenspectrum in the face space is dominated by

the face structural component, the parameters of � and � are

determined by fitting the face portion of the model vFk ¼
�=ðkþ �Þ to the real eigenspectrum in the face space F.

Although not limiting ourselves from other possible fitting

methods, in all experiments of this work, we simply

determine � and � by letting vF1 ¼ �w
1 and vFm ¼ �w

m, which

yields

� ¼ �w
1 �

w
mðm� 1Þ

�w
1 � �w

m

; ð11Þ

� ¼ m�w
m � �w

1

�w
1 � �w

m

: ð12Þ

Fig. 3 shows the square roots of a real eigenspectrum �w
k

and the face portion of its model �F
k ¼ ffiffiffiffi

vF
k

p
. We see that the

model �F
k fits closely to the real �w

k in the face space F but
has slower decay in the noise space N. The faster decay of
the real eigenspectrum �w

k in N due to noise and the effect
of the limited number of training samples is what we want
to slow down.

In the null space, we have no information about the

variation of the eigenvalues and, hence, all features are

treated in the sameway. The zero variance in the null space is

only an estimate on one set of the training data. Another set of

trainingdatamayeasilymake themnonzero, especiallywhen

larger number of training samples are used. Therefore, we

should not trust the zero variance and derive an infinite or

very large feature weights in this space. However, based on

the available training data that result in zero variances in the

null space, the featureweights in the null space should not be

smaller than those in the other subspaces.
Therefore, we regularize the eigenspectrum by replacing

the noise dominating �w
k in N with the face portion of the

model vFk ¼ �=ðkþ �Þ and replacing the zero �w
k in the null

space ; with the constant vFrþ1. Thus, the regularized
eigenspectrum ~�w

k is given by

~�w
k ¼

�w
k ; k < m
�

kþ� ; m � k � r
�

rþ1þ� ; r < k � n:

8><
>: ð13Þ

The proposed feature weighting function is then

~ww
k ¼ 1ffiffiffiffiffiffi

~�w
k

q ; k ¼ 1; 2; . . .n: ð14Þ

Fig. 3 shows the proposed feature weighting function ~ww
k

calculated by (11), (12), (13), and (14) comparing with that
ww

k of (10). Obviously, the new weighting function ~ww
k is

identical to ww
k in the face space, increases along with k at a

much slower pace than ww
k in the noise space, and has

maximal weights instead of zero of ww
k in the null space.

Using this weighting function and the eigenvectors �w
k ,

the training data are transformed to

~Yij ¼ ~�wT
n Xij; ð15Þ

where

~�w
n ¼ ½ ~ww

k �
w
k �nk¼1 ¼ ½ ~ww

1 �
w
1 ; . . . ; ~w

w
n�

w
n � ð16Þ

is a full rank matrix that transforms an image vector to an
intermediate feature vector. There is no dimension reduc-
tion in this transformation as ~Yij and Xij have the same
dimensionality n.

3.2 Discriminant Eigenfeature Extraction

After the feature regularization, a new total scatter matrix is
formed by vectors ~Yij of the training data as

~St ¼
Xp
i¼1

ci
qi

Xqi
j¼1

ð ~Yij � Y Þð ~Yij � Y ÞT ; ð17Þ

where Y ¼ Pp
i¼1

ci
qi

Pqi
j¼1

~Yij.

There is somedifference between the total scattermatrix ~St

and the between-class scattermatrix ~Sb of the trainingdata ~Yij

because the within-class scatter matrix is not fully whitened
in the noise space N, and the null space ; is not discarded.
Some works [31], [18] show that when the training data are
small, PCA can outperform LDA and that PCA is less
sensitive to the different training databases. Our experiments
show that ~St outperforms ~Sb, but only very marginally and
not consistently for different numbers of features. For a
training set that contains images of only a few people, ~Sb may
have a problem of extracting sufficient number of features.
The maximal number of features extracted based on ~Sb is
p� 1 at most while that based on ~St could be much larger
ðPp

i¼1 qi � 1Þ. Thus, in this work, we suggest to employ the
total scatter matrix ~St of the regularized training data to
extract the discriminative features.

The regularized features ~Yij will be decorrelated for ~St by
solving the eigenvalue problem as (4). Suppose that the
eigenvectors in the eigenvector matrix ~�t

n ¼ ½ ~�t
1; . . . ;

~�t
n� are

sorted in a descending order of the corresponding eigenva-
lues. The dimensionality reduction is performed here by
keeping the eigenvectors with the d largest eigenvalues

~�t
d ¼ ~�t

k

h id
k¼1

¼ ~�t
1; . . . ;

~�t
d

h i
; ð18Þ

where d is the number of features usually selected by a
specific application.

Thus, the proposed feature regularization and extraction
matrix U is given by

U ¼ ~�w
n
~�t
d; ð19Þ

which transforms a face image vector X, X 2 IRn, into a
feature vector F , F 2 IRd, by

F ¼ UTX: ð20Þ
We see that the decomposition of the image space into

three subspaces is used only for the regularization of the
feature scaling. The discriminant evaluation (here, the
evaluation of the eigenvalues of ~St) is performed in the full
space IRn. Thus, feature extraction is not restricted to project
an image vector into one or two of these three subspaces.
More specifically, any single feature inF is extracted from the
whole space IRn since any final projection vector in U may
have nonzero components in all the three subspaces.
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3.3 The Proposed Algorithm

The proposed eigenfeature regularization and extraction

(ERE) approach is summarized below:

At the training stage

1. Given a training set of face image vectors fXijg,
compute Sw by (1) and solve the eigenvalue problem
as (4).

2. Decompose the eigenspace into face, noise, and null
spaces by determining the m value using (7) and (8).

3. Transform the training samples represented by Xij

into ~Yij by (15) with the weighting function (14)
determined by (11), (12), and (13).

4. Compute ~St by (17) with ~Yij and solve the eigenvalue
problem as (4).

5. Obtain the final feature regularization and extraction
matrix by (16), (18), and (19) with a predefined
number of features d.

At the recognition stage

1. Transform each n-D face image vector X into
d-D feature vector F by (20) using the feature
regularization and extraction matrix U obtained in
the training stage.

2. Apply a classifier trained on the gallery set to
recognize the probe feature vectors.

In the experiments of this work, a simple first nearest
neighborhood classifier (1-NNK) is applied to test the
proposed ERE approach. Cosine distance measure between
a probe feature vector FP and a gallery feature vector FG

dstðFP ; FGÞ ¼ � FP
TFG

kFPk2kFGk2
ð21Þ

is applied to the proposed approach, where k � k2 is the
norm 2 operator.

4 ANALYSIS AND COMPARISON

Two techniques are developed and integrated in the
proposed ERE approach for face recognition. First, it
evaluates the discriminant value in the whole space and
the dimensionality reduction or feature extraction occurs
only at the final stage after the discriminant assessment.
Second, the proposed eigenspectrum regularization not
only facilitates this discriminative information search in the
whole space but also alleviates the overfitting problem.

4.1 Discriminant Evaluation in a Subspace,
Complementary Subspaces, and the Whole
Space

Most subspace approaches such as FLDA, DLDA, NLDA,
and UFS discard a subspace before the discriminant
evaluation. The extracted features are only suboptimal as
they are the most discriminative only in a subspace.

Although BML works in the whole space, it does not
evaluate the discriminant value and, hence, the whole face
image must be used in matching. Amodified LDA approach
[27] estimates the discriminant value in the full space of St by
replacing Sw with St. It is easy to see that, after whitening by
St, the between-class variance is always one in all dimensions
of the null space of Sw but is always smaller than one in all

dimensionsof the range spaceofSw.Obviously, thenull space
of Sw is unduly overemphasized, and the extracted features
maynot beproperly scaleddue to the replacement ofSw bySt

in the discriminant assessment.
Some approaches [28], [21], [14] extract features separately

from the two complementary subspaces of Sw. One of them
[28] first extracts all the p� 1 features from the null space of
Sw. It then extracts some features from the range space of Sw,
where St is used as a replacement of Sw in the discriminant
evaluation. Obviously, this method, similar to the approach
in [27], overemphasizes the null space and may not properly
scale the features.TheDSLapproach [21] scales features in the
complementary subspace by the average eigenvalue of Sw

over this subspace.As theeigenvalues in this subspacearenot
well estimated [21], their averagemay not be a proper scaling
factor relative to those in the principal subspace. To
circumvent the feature-scaling problem in the training phase,
a summed normalized distance is proposed in [14] that
properly combines the two groups of features in the
recognition phase.

Although these double-space approaches do not throw
away any subspace before the discriminant evaluation, it is
inefficient or only suboptimal to evaluate the discriminant
value and extract features separately in two subspaces. Other
open questions include how to divide the space into the two
subspaces properly and how to apportion the given number
of features to the two subspaces reasonably. In contrast, the
proposed ERE approach searches the most discriminative
information in the whole space, and the feature scaling
problem caused by the small and zero eigenvalues is
alleviated by the eigenspectrum regularization.

4.2 Eigenspectrum Regularization

It is well known that the estimated covariance matrix or its
eigenvalues need to be regularized, especially for small
number of training samples. Problems of the biased
estimation of eigenvalues that cause overfitting and, hence,
poor generalization were well addressed in [32].

A method called RD-QDA [33] was proposed to regular-
ize Sw and applied in the face recognition. Another
regularization approach called R-LDA [34] was derived by
replacing Sw with Sw þ 	Sb, where 	 is a regularization
parameter. However, both approaches are based on the
DLDA framework, and the appropriate values of the
regularization parameters are different for different data-
bases and database sizes. These critical values are deter-
mined by exhaustive search with the help of a validation
data set in the experiment. Furthermore, both approaches
regularize the pooled within-class scatter matrix equiva-
lently by adding a constant to all eigenvalues. Although the
largest sample-based eigenvalues are biased high and the
smallest ones are biased low, as pointed out in [32], the bias
is most pronounced when the population eigenvalues tend
toward equality, and it is correspondingly less severe when
their values are highly disparate. For the application of face
recognition, it is well known that the eigenspectrum first
decays very rapidly and then stabilizes. Hence, adding a
constant to the eigenspectrum may bias back the rapidly
changing eigenvalues in F too much that introduces
additional error source and bias back the flat eigenvalues
in N too little at the same time.

Therefore, the proposed approach decomposes the image
space into a highly disparate face dominant subspace F, a
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flat subspace N and a null space ;, and regularizes
eigenvalues differently in these three subspaces. The
median operation well separates the highly disparate
eigenvalues from the stabilized ones. As the eigenvalues
tend toward equality inN and are highly disparate in F, the
distance dm;r ¼ �med � �r that indicates the half range of the
eigenvalue variation in N is very small compared to the
highly disparate eigenvalues in F. Therefore, �med þ dm;r is
proposed to separate the highly disparate subspace F from
the flat subspace N.

Although the finite number of training samples may also
bias the eigenvalues in F, we ignore this very small bias
because the population eigenvalues are highly disparate in
this subspace. In N, however, the population eigenvalues
tend towardequality and, hence, the finite number of training
samples results in a much faster decay of the eigenvalues.
Therefore, we slow down the decay of the eigenvalues by
replacing the real eigenspectrum in N with the proposed
model (5) that approximates to the real eigenspectrum in F.

The zero eigenvalues in the null space are only estimates
from one set of the training data. Adding new training
samples will make them nonzero. However, based on the
available training data that result in zero eigenvalues, the
regularized eigenvalues in the null space should be smaller
than those in the other subspaces. Aswe have no information
about the variation of the eigenvalues in the null space, they
are regularized as a positive constant smaller than the
smallest regularized eigenvalue in the other subspaces.

BML can be seen as another eigenspectrum regularization
approach that also keeps eigenvalues in the principal
subspace unchanged and only modifies eigenvalues in the
complementary subspace. DSL adopts the same regulariza-
tion method. Both approaches replace eigenvalues in the
complementary subspace with the constant calculated by the
average eigenvalue over this subspace. Obviously, this will
amplify some eigenvalues and attenuate the others in the
complementary subspace. The unduly reduced eigenvalues
in the complementary subspace may introduce additional
overfitting problem [35] because the differences between
these eigenvalues and those in the principal subspace are
enlarged.

4.3 Computational Complexity

The computational complexity of the proposed ERE method
for training is greater than other subspace methods as it
evaluates the discriminant value in the full space of Sw.
Although the null spaces of Sw and Sb both contain
discriminative information and, hence, are preserved in the
proposed ERE approach, there is no statistical basis that the
intersection of the null spaces of Sw and Sb, that is, the null
space of St contributes to the discriminative ability [28].
Therefore, we can apply PCA on St to remove the null space
of St first and then apply the ERE approach on the
ðl� 1Þ-dimensional subspace. This makes the ERE approach
tractable for very large image sizes ðn � lÞ. In practical
applications, training is usually an offline process and
recognition isusually anonlineprocess. Thus, the recognition
time is usually much more critical than the training time.
Althoughtherecognitiontimeof theEREapproachis thesame
as other approaches for the same number of features, it can be
faster than other approaches for the same recognition rate
because the proposed ERE approach, as we will see in the

experiments, achieves a given recognition rate with fewer
features than other approaches.

5 EXPERIMENTS

In all experiments reported in this work, images are
preprocessed following the CSU Face Identification Evalua-
tion System [36]. Five databases ORL, AR, GT, and two from
FERET are used for testing. Each database is partitioned into
training and testing sets. For FERET databases, there is no
overlap in person between the training and testing sets. As
ORL, AR, and GT databases have only a small number of
persons, both training and testing sets contain all persons.
However, there isnooverlap in the sample imagebetween the
training and testing sets. The recognition error rate given in
thiswork is the percentage of the incorrect top 1match on the
testing set. The proposed ERE method is tested and
graphically compared with the PCA with euclidian distance
(PCAE), PCAM distance, FLDA, BML, DSL, and UFS
approaches in four figures. Furthermore, three experimental
results are numerically recoded in two tables, which include
more results for comparison, such as the results of ERE using
~Sb ðERE ~Sb), NLDA, and SRLDA (a simple regularized LDA
that replaces all zero eigenvalues of Sw with the minimum
nonzero eigenvalue). The parameters of UFS applied are
those which result in the best performance through an
exhaustive search in the experiments of [29]. We implement
FLDA by using PCA to reduce the dimensionality to 	ðl� pÞ,
0 < 	 � 1 as the rank ofSw is l� p atmost.Wepresent the best
result of FLDA with 	 varying from 0.7 to 1.

5.1 Results on FERET Database 1

There are 2,388 images comprising of 1,194 persons (two
images FA/FBper person) selected from the FERETdatabase
[37]. Images are cropped into the size of 33	 38. In the first
experiment, images of 250 people are randomly selected for
training, and the remaining images of 944 people are used for
testing. Fig. 4 shows the recognition error rate on the testing
set against the number of features d used in the matching.
Note that for the BML approach, the number of features used
in the matching is the image dimensionality n rather than d.

Fig. 4 shows that BML outperforms FLDA for small d
because BML has a large average eigenvalue 
 in the
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Fig. 4. Recognition error rate against the number of features used in the

matching on the FERET database of 500 training images (250 people)

and 1,888 testing images (944 people).



complementary subspace, whereas FLDA suffers overfitting
problem due to the small eigenvalues of Sw. However, for
large d, the small 
 results in more overfitting of BML than
FLDA because BML uses the inverse of 
 to scale features of
dimensions from dþ 1 to n, whereas FLDA discards the
dimensions from 	ðl� pÞ þ 1 ton. UFS outperformsBMLand
FLDA as it solves the overfitting problem well by reducing
the dimensionality to 150.DSL outperformsBML, FLDA, and
UFSwhena largernumberof features areapplied.This shows
that the null space indeed contains useful discriminative
information. However, extracting discriminative features
separately from the two subspaces is not efficient for small
number of features (d < 40 in Fig. 4). The proposed ERE
approach consistently outperforms all other approaches for
every number of features tested in the experiments, and the
accuracy gain is significant for smaller number of features.

In the second experiment,more training samples (497 peo-
ple) are randomly selected, and the remaining images of
697 people are used for testing. The recognition error rates are
recorded in Table 1. All approaches show lower recognition
error rates than those in Fig. 4 due to the larger number of
training samples. The relative performances among BML,
FLDA, and DSL are similar to those in Fig. 4. However, UFS
achieves higher accuracy gain than BML, FLDA, and DSL.
The ERE approach again outperforms all other approaches
consistently in all columns in Table 1.

5.2 Results on FERET Database 2

This database is constructed, similar to one data set used in
[38], by choosing 256 subjects with at least four images per
subject. However, we use the same number of images (four)
per subject for all subjects. Five hundred twelve images of the
first 128 subjects are used for training, and the remaining
512 images serve as testing images. The size of thenormalized
image is 130	 150, sameas that in [38]. For such a large image

size, we first apply PCA to remove the null space of St and
then apply the ERE approach on the 511-dimensional feature
vectors. The training time of the ERE approach by a Matlab
program is about 1.3 times of that of FLDA approach. The
ith images of all testing subjects are chosen to form a gallery
set, and the remaining three images per subject serve as the
probe images tobe identified fromthegallery set. Fig. 5 shows
the average recognition error rates over the four probe sets,
each of which has a distinct gallery set ði ¼ 1; 2; 3; 4Þ.

Comparing to that inFig. 4, the recognition error rates of all
methods inFig. 5 increasedue to larger variationof the testing
images. They are also higher than those in [38] on a similar
database because of the different training and testing
procedures. In our experiment, there is no overlap in person
between the training and testing sets and only one image per
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TABLE 1
Recognition Error Rate of Different Approaches for Different Number of Features

Fig. 5. Recognition error rate against the number of features used in the

matching on the FERET database of 512 training images (128 people)

and 512 testing images (128 people).



person in the gallery set. As the large image size produces a
large null space, the variation of the testing images in this
large null space results in a higher recognition error of BML
that uses the whole null space than FLDA that discards the
null space. Similar to the first two experiments, the proposed
ERE approach achieves the lowest recognition error rate
consistently at all points in Fig. 5.

5.3 Results on ORL Database

Images of the ORL database [39] are cropped into the size of
50	 57. The ORL database contains 400 images of 40 people
(10 images per person). We first test various approaches
using the first five samples per person for training and the
remaining five samples per person for testing. Hence, there
are 200 images in the training set and 200 images in the
testing set. Fig. 6 shows the recognition error rate on the
testing set against the number of features.

As the training set has only 200 images, it does not well
represent the variations of the testing images. Therefore, the
small principal space does not capture the discriminative
information well. This results in poor performance of
FLDA. UFS discards more dimensions and, hence, performs
worse than FLDA. The DSL that extracts features in two
complementary subspaces is better than FLDA. The BML
that works in the whole space is better than DSL. For this
small database, the proposed ERE approach also consis-
tently outperforms other approaches.

As the ORL database is small, we conduct another
experiment with leave-one-out training and testing strategy.
In each of the 400 runs of training and testing, one sample is
picked out for testing, and the remaining 399 samples are
included in the training set. The testing results are numeri-
cally recorded in Table 1.As all images but one are used in the
training, a small principal subspace on the training data can
well represent the testing images. This results in better
performances of the FLDA and the UFS, which only use the
principal subspace, than the DSL and BML, which use both
the principal and its complementary subspaces. However,
the proposed ERE approach that works on the entire space
outperforms FLDA and UFS. It shows that, for this training
task, the complementary subspace is still useful but not well
handled by the DSL and BML algorithms.

5.4 Results on AR Database

The color images in AR database [40] are converted to gray
scaleandcropped into the sizeof120	 170, sameas the image
sizeused in [40], [41]. Therewere50 subjectswith12 imagesof
frontal illumination per subject used in [40], and the same
amount of subjects with 14 nonoccluded images per subject
were used in [22]. In our experiment, 75 subjects with
14 nonoccluded images per subject are selected from the AR
database. The first seven images of all subjects are used in the
training, and the remaining seven images serve as testing
images.Forthis largeimagesize,wefirstapplyPCAtoremove
the null space of St and then apply the ERE approach on the
524-dimensional feature vectors. The training time of the ERE
approach by aMatlab program is about 1.4 times of that of the
FLDA approach. Fig. 7 shows the recognition error rate.

As the images of the AR database were taken under
tightly controlled conditions of illumination and viewpoint
[40], the training set seems to represent the test set very
well. FLDA, UFS, and PCAM that only use the principal
subspace slightly outperform BML and DSL that use both
the principal and its complementary subspaces. Further-
more, PCAM that uses leading eigenvectors of St surpris-
ingly outperforms FLDA, DSL, and UFS. It shows that the
problems of small eigenvalues of Sw dominate other factors
for this tightly controlled database. Although the proposed
ERE approach evaluates the discriminant value in the
whole space of Sw, it consistently outperforms all other
approaches at all points in Fig. 7.

5.5 Results on Georgia Tech (GT) Database

The Georgia Tech (GT) Face Database [42] consists 750 color
images of 50 subjects (15 images per subject). These images
have large variations in both pose and expression and some
illumination changes. Images are converted to gray scale
and cropped into the size of 92	 112. The first eight images
of all subjects are used in the training and the remaining
seven images serve as testing images. The testing results are
numerically recorded in Table 2.

For this database that has large variations in both pose and
expression and some illumination changes, Table 2 shows
that the FLDA, BML,NLDA, SRLDA,DSL, andUFSmethods
have similar performances, which are significantly better
than PCAE and PCAE. The proposed ERE approaches,
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Fig. 6. Recognition error rate against the number of features used in the

matching on the ORL database of 200 training images (40 people) and

200 testing images (40 people).

Fig. 7. Recognition error rate against the number of features used in the

matching on the AR database of 525 training images (75 people) and

525 testing images (75 people).



ERE ~S
b
and ERE ~S

t
both outperform all other approaches

consistently in all columns in Table 2.

5.6 Significance of the Proposed Approach

We have performed seven sets of experiments with five
different databases. The proposed ERE approach shows
superior performance in the following five aspects: First, ERE
consistently outperforms all other approaches in all the seven
experiments, whereas no other approach can perform the
second best consistently in all experiments. Second, ERE
outperforms all other approaches consistently for every
number of features tested in the experiments (note that
BMLusesn rather than d features in thematching process). In
contrast to that, no other approach can perform the second
best at all points even in a single experiment. Third, the ERE
achieves the best performance in all experiments without
tuning its parameter. EREhasonlyone freeparameter� in (8).
Choosing some proper values of � in different experiments
will further enhance its recognition performances. Fourth,
although ERE outperforms certain other approaches only
marginally for a certain number of features in certain
experiments, significant better performances of the ERE
approach comparing to these approaches can always be
found in at least three other experiments. Fifth, ERE
significantly outperforms all other approaches for small
number of features. This demonstrates that theproposedERE
approach extracts more discriminative features than others.

6 CONCLUSION

This paper addresses problems of extracting discriminant
eigenfeatures from the face image based on a set of training
samples. Noise disturbance and finite number of training
samples in practicemay cause eigenvalues of a scattermatrix

deviating from the true variances of the images projected on
the corresponding eigenvectors. This deviationmay result in
recognition performance deterioration for various subspace
approaches that scale the eigenfeature by the inverse of the
square root of the eigenvalue. Especially for small eigenva-
lues, their inverses are highly sensitive to the noise dis-
turbance and the effect of the finite number of training
samples. A different training set may easily change these
values substantially. Therefore, for a good generalization,
these small and zero eigenvalues should be regularized.
Another problem addressed in this paper is the null space of
the scattermatrix. Both theprincipal and thenull spacesof the
within-class scatter matrix contain discriminative informa-
tion. Neither of them should be simply discarded in the
feature extraction process. An optimal feature vector may
reside in dimensions that lies in both subspaces, in other
words, itmayhave nonzero components in both subspaces. It
is inefficient or only suboptimal to construct a feature vector
by extracting features separately from the principal and the
null spaces. The discriminant evaluation in the whole space
leads toamoreefficient feature representationofa face image.

In this work, eigenspace spanned by the eigenvectors of
the within-class scatter matrix is decomposed into a reliable
subspace, an unstable subspace and a null subspace.
Eigenfeatures are regularized differently in these three
subspaces based on an eigenspectrum model to alleviate
problems of instability, overfitting, or poor generalization.
The discriminant evaluation is performed in the whole space
and the featureextractionordimensionality reduction isdone
only at the final stage after the discriminant assessment. This
facilitates a discriminative and stable low-dimensional
feature representation of the face image. Extensive experi-
ments on the FERET, ORL, AR, and GT databases with
different numbers of training samples demonstrate that the
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TABLE 2
Recognition Error Rate of Different Approaches for Different Number of Features on the GT Database



proposed approach consistently outperforms Eigenface,

FLDA, BML, null space LDA, dual-space LDA, and unified

subspace framework. Especially, it achieves more accuracy

gains for a smaller number of features and for a smaller size of

training set. This verifies that the proposed approach is more

efficient in the feature extraction and more stable, less

overfitting the training data or better generalization.
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